
TB2J

Xu He

Apr 18, 2024

CONTENTS:

1 Installation 3
1.1 Dependencies . 3
1.2 How to install . 3

2 Conventions of Heisenberg Model 5

3 Tutorial 7
3.1 Use TB2J with Wannier90 . 7
3.2 Use TB2J with Siesta . 10
3.3 Use TB2J with OpenMX . 11
3.4 Use TB2J with ABACUS . 12
3.5 Parameters in calculation of magnetic interaction parameters . 14
3.6 Averaging multiple parameters . 15
3.7 The ligand spin problem: downfolding the Heisenberg Hamiltonian 16
3.8 Decompose the exchange into orbital contributions. 16
3.9 The output of TB2J . 18

4 Applications 21
4.1 Magnon band structure from TB2J output . 21
4.2 Application: Spin Dynamics . 23
4.3 Writting eigen values and eigenvectors of J(q) . 27

5 Extending TB2J 29
5.1 Interface TB2J with other first principles or similar codes. 29
5.2 Extend the output to other formats . 30

6 Roadmap of TB2J 33
6.1 Features to be implemented . 33

7 Ecosystem 35
7.1 Input to TB2J . 35
7.2 Spin dynamics code interfaced with TB2J . 36
7.3 Workflows . 36
7.4 Codes for Linear Spin Wave method and magnon band structure . 36
7.5 Related software without already-built interface with TB2J . 36

8 Frequently asked questions. 39
8.1 How can I ask questions or report bugs? . 39
8.2 Is it reasonable to do the DFT calculation in a magnetic non-ground state for the calculation of the

exchange parameters? . 39
8.3 What quantities should I look into for validating the Wannier functions? 39

i

8.4 How can I improve the Wannierization? . 40
8.5 How can I speedup the calculation? . 40
8.6 Is is possible to reduce the memory usage? . 40
8.7 My exchange parameters are different from the results from total energy methods. What are the pos-

sible reasons? . 40
8.8 The results seems to contradict the experimental results. Why? . 40
8.9 Does TB2J work with 2D structures or molecules? . 41

9 Contributors 43

10 References 45

11 Development 47
11.1 Code . 47

12 Release Notes 49
12.1 v0.8.2 March 4, 2024 . 49
12.2 v0.8.1 Febrary 25, 2024 . 49
12.3 v0.8.0 Febrary 18, 2024 . 49
12.4 v0.7.7 October 11, 2023 . 49
12.5 v0.7.6 May 10, 2023 . 49
12.6 v0.7.3.1 July 24, 2022 . 50
12.7 v0.7.3 June 8, 2022 . 50
12.8 v0.7.2.1 April 20, 2022 . 50
12.9 v0.7.2 March 01, 2022 . 50
12.10 v0.7.1 January 04, 2022 . 50
12.11 v0.7.0 October 05, 2021 . 50
12.12 v0.6.10 September 29, 2021 . 50
12.13 v0.6.9 September 15, 2021 . 50
12.14 v0.6.8 September 15, 2021 . 51
12.15 v0.6.7 September 10, 2021 . 51
12.16 v0.6.6 September 1, 2021 . 51
12.17 v0.6.4 August 9, 2021 . 51
12.18 v0.6.3 July 3, 2021 . 51
12.19 v0.6.2 May 27, 2021 . 51
12.20 v0.6.1 . 51
12.21 v0.6.0 . 52
12.22 v0.5.0 . 52
12.23 v0.4.4 March 16, 2021 . 52
12.24 v0.4.3 March 11, 2021 . 52
12.25 v0.4.2 March 11, 2021 . 52
12.26 v0.4.1 February 2, 2021 . 52
12.27 v0.4.0 February 1, 2021 . 52
12.28 v0.3.8 December 29, 2020 . 52
12.29 v0.3.6 December 7, 2020 . 53
12.30 v0.3.5 November 3, 2020 . 53
12.31 v0.3.3 September 12, 2020 . 53
12.32 v0.3.2 September 12, 2020 . 53
12.33 v0.3.1 September 3, 2020 . 53
12.34 v0.3 August 31, 2020 . 53
12.35 v0.2 2020 . 54
12.36 v0.1 2018 . 54

13 Indices and tables 55

ii

Index 57

iii

iv

TB2J

TB2J is an open-source Python package for the automatic computation of magnetic interactions (including
exchange and Dzyaloshinskii-Moriya) between atoms of magnetic crystals from density functional Hamil-
tonians based on Wannierfunctions or linear combinations of atomic orbitals. The program is based on
Green’s function method with the local rigid spin rotation treated as a perturbation. As input, the package
uses the output of either Wannier90, whichis interfaced with many density functional theory packages, or
of codes based on localized orbitals (SIESTA, OpenMX and Abacus). A minimal user-input is needed,
which allows for easy integration into high-throughput workflows.

The TB2J project is initialized in the PhyTheMa and Nanomat teams in the University of Liege.

The source code can be found at https://github.com/mailhexu/TB2J.

For questions please use the online forum at https://groups.google.com/g/tb2j, or send email to mailto:
tb2j@googlegroup.com.

More TB2J examples with full DFT/Wannier data can be found at https://github.com/mailhexu/TB2J_
examples .

There are video tutorials in TB2J channel on youtube: https://www.youtube.com/channel/
UCPbmKE10Wz3orbo4x-g0c9A .

CONTENTS: 1

https://github.com/mailhexu/TB2J
https://groups.google.com/g/tb2j
mailto:tb2j@googlegroup.com
mailto:tb2j@googlegroup.com
https://github.com/mailhexu/TB2J_examples
https://github.com/mailhexu/TB2J_examples
https://www.youtube.com/channel/UCPbmKE10Wz3orbo4x-g0c9A
https://www.youtube.com/channel/UCPbmKE10Wz3orbo4x-g0c9A

TB2J

2 CONTENTS:

CHAPTER

ONE

INSTALLATION

1.1 Dependencies

TB2J is a python package which requires python version higher than 3.6 to work. It depends on the following packages.

• numpy>1.16.5

• scipy

• matplotlib

• ase>=3.19

• tqdm>=4.42.0

• p_tqdm

• pathos

• packaging

If you use pip to intall, they will be automatically installed so there is no need to install them manually before installing
TB2J.

There are some optional dependencies, which you need to install if needed.

• sisl>0.10.0 (optional) for Siesta interface

• GPAW (optional) For gpaw interface (not yet fully operational).

1.2 How to install

The most easy way to install TB2J is to use pip:

pip install TB2J

You can also download TB2J from the github page, and install with

python setup.py install

The –user option will help if there is permission problem.

It is suggested that it being installed within a virtual environment using e.g. pyenv or conda.

By default, TB2J only forces the non-optional dependencies to be installed automatically. The sisl package which is
used to read the Hamiltonian from the Siesta or OpenMX output is needed, which can also be installed with pip. The

3

TB2J

GPAW-TB2J interface is through python directly, which of course requires the gpaw python package. The sisl and
gpaw python package can be installed via pip, too. For example:

pip3 install sisl

1.2.1 How to install in a virtual environment

It is recommend to install TB2J in virtual enviroment (venv), which is like a world parallel to the main python envi-
ronment where the other packages are installed. With this, conflictions between library versions can be avoided. For
example, may be you have other packages only work with a old version of numpy, whereas TB2J requires a newer
version. Then within this venv you can have the new version without needing to worry about the conflictions.

One way to build a python venv is to use venv library built in python. We can make a new python virtual environment
named TB2J like this:

python3 -m venv <your path>/TB2J

where you can replace <your path> to the path where you want to put the files for the venv.

Then you can activate the venv py using

source <your path>/TB2J/bin/activate

The within this venv you can install the python packages. And this venv should be activated when you use TB2J.

There are other ways to build virtual environments, for example, with conda .

4 Chapter 1. Installation

https://docs.python.org/3/library/venv.html
https://docs.conda.io/

CHAPTER

TWO

CONVENTIONS OF HEISENBERG MODEL

Before you use the TB2J output, please read very carefully this section. There are many conventions of the Heisenberg.
We strongly suggest that you clearly specify the convention you use in any published work. Here we describe the
convention used in TB2J.

The Heisenberg Hamiltonian contains four different parts and reads as

𝐸 =−
∑︁
𝑖

𝐾𝑖�⃗�
2
𝑖

−
∑︁
�̸�=𝑗

[︂
𝐽 𝑖𝑠𝑜
𝑖𝑗 �⃗�𝑖 · �⃗�𝑗

+ �⃗�𝑖J
𝑎𝑛𝑖
𝑖𝑗 �⃗�𝑗

+ �⃗�𝑖𝑗 ·
(︁
�⃗�𝑖 × �⃗�𝑗

)︁]︂
,

where the first term represents the single-ion anisotropy (SIA), the second the isotropic exchange, and the third term
is the symmetric anisotropic exchange, where J𝑎𝑛𝑖 is a 3 × 3 tensor with 𝐽𝑎𝑛𝑖 = 𝐽𝑎𝑛𝑖,𝑇 . The final term is the DMI,
which is antisymmetric. Importantly, the SIA is not accessible from Wannier 90 as it requires separately the spin-orbit
coupling part of the Hamiltonian. However, it is readily accessible from constrained DFT calculations.

We note that there are several conventions for the Heisenberg Hamiltonian, here we take a commonly used one in
atomic spin dynamics: we use a minus sign in the exchange terms, i.e. positive exchange 𝐽 values favor ferromagnetic
alignment. Every pair 𝑖𝑗 is taken into account twice, 𝐽𝑖𝑗 and 𝐽𝑗𝑖 are both in the Hamiltonian. Similarly, both 𝑢𝑣 and
𝑣𝑢 are in the symmetric anisotropic term. The spin vectors �⃗�𝑖 are normalized to 1, so that the parameters are in units
of energy. The other commonly used conventions differ in a prefactor 1/2 or a summation over different 𝑖𝑗 pairs only.
The conversion factors to other conventions are given in the following table. For other conventions in which the spins
are not normalized, the parameters need to be divided by |�⃗�𝑖 · �⃗�𝑗 | in addition.

5

TB2J

6 Chapter 2. Conventions of Heisenberg Model

CHAPTER

THREE

TUTORIAL

3.1 Use TB2J with Wannier90

This tutorial uses cubic SrMnO3 as an example to show how to calculate the exchange parameters for the Heisenberg
model starting from density functional theory. First, the Hamiltonian in the basis of Wannier functions (WF) is con-
structed using Wannier90. Then, TB2J is used to calculate the exchange parameters. We assume that the reader has a
basic knowledge of maximally localized WFs and the Wannier90 package (see Maximally localized Wannier Functions,
Wannier90).

Before beginning, you might consider to work in a subdirectory for this tutorial. Why not Work_tb2j?

The input files for the tutorial can be found inside examples/abinit-w90/SrMnO3 in your TB2J directory. Please copy
abinit.in, abinit.files and the three pseudopotential files (inside the psp directory) to Work_tb2j. You also need the two
files abinito_w90_down.win and abinito_w90_up.win which provide additional input for Wannier90. The names of
these two files are _w90_.win with the prefix being given in the forth line of the .files file. Modify the .files file such
that the entries match the location of your files.

3.1.1 Step 0: Find the orbitals and energy range to be used in the Wannier Function
Hamiltonian.

Before we can construct the Hamiltonian in the basis of the Wannier functions, we need to determine which orbitals
to include in the construction. We need to include the orbitals with energies around the Fermi energy (𝐸𝐹). Since we
are interested in calculating exchange parameters we need to include spin as a degree of freedom in the calculation and
select the magnetic orbitals and all orbitals that overlap with them. To determine the orbitals and energy range, we
calculate either the density of states or the band structure of the system. For SrMnO3 the density of states is given in
the figure below.

As we can see, the Mn 3d and O 2p orbitals should be included into the WF Hamiltonian. The Sr 4d orbitals are too
high in energy, so we exclude them from the WF Hamiltonian.

3.1.2 Step 1: Construct WF Hamiltonian from DFT.

The Wannier90 code makes use of two energy windows to disentangle the bands. An outer window (the disentangle
window), which contains all the required orbitals, and an inner window (the frozen window), which only contain the
required orbitals, should be provided. From the DOS we find that all the Mn 3d and O 2p bands are between -10 and
10 eV, the Sr 4d bands above 6 eV, which should be excluded from the frozen window. Thus we can select the energy
window (-10, 10) eV and the frozen window of (-9, 5) eV. Note that the energy defined in Wannier90 is not relative to
𝐸𝐹 , so we need to add the Fermi energy (here: 6.15 eV) to the energies. We use Mn d and O p orbitals as an initial
guess for the WFs. This information can be found in the .win files

7

https://doi.org/10.1103/RevModPhys.84.1419
http://wannier90.org/

TB2J

Energy windows (Fermi energy is 6.15 eV)
dis_win_min = -3.85
dis_win_max = 16.15
dis_froz_min = 1.15
dis_froz_max = 11.15

begin projections
Mn: d
O : p
end projections

For a detailed explanation of the input variables for Wannier90 please see Wannier90. For our purpose, it is important
to write out the Hamiltonian and the centers of the Wannier functions.

write the postitions of WF
write_xyz = true

write the WF Hamiltonian (Note for W90 version<2.1, it is hr_plot)
write_hr = true

Alternatively, the Wannier hamiltonian and the position operator can be written into one “_tb.dat” file, which can be
read by TB2J since version 0.8.2

write the WF Hamiltonian and the position operator
write_tb=ture

The following lines need to be added to the abinit input file to generate WFs.

prtwant 2 # enable wannier90
w90iniprj 2 # use projection to orbitals instead of random.
w90prtunk 0 # use 1 if you want to visualize the WF's later.

Now you can run

abinit < abinit.files > log 2> err

8 Chapter 3. Tutorial

http://wannier90.org/

TB2J

which generates the files below for spin up, and the same set for spin down

abinito_w90_up_hr.dat abinito_w90_up_centres.xyz abinito_w90_up.wout

The .dat file contains the Hamiltonian, the .xyz file contains the Wannier centers. The .wout file has a summary of the
process of running Wannier90 and will be used to calculate the exchange parameters.

If you’re using Wannier90 version < 3.0, the spin down files are not automatically generated due to a bug. To get the
files, the following command is needed:

wannier90.x abinito_w90_down

To get localized WFs can be tricky sometimes. It is necessary to check if the WFs are localized by looking at the .wout
file. For example, we have

Final State
WF centre and spread 1 (1.904992, 1.904992, 1.904992) 0.50185811
WF centre and spread 2 (1.904992, 1.904992, 1.904992) 0.48650086
WF centre and spread 3 (1.904992, 1.904992, 1.904992) 0.48650086
WF centre and spread 4 (1.904992, 1.904992, 1.904992) 0.50185997
WF centre and spread 5 (1.904992, 1.904992, 1.904992) 0.48650084
WF centre and spread 6 (1.904992, 1.904992, -0.000000) 0.74591265
WF centre and spread 7 (1.904992, 1.904992, 0.000000) 0.96557405
WF centre and spread 8 (1.904992, 1.904992, -0.000000) 0.96557405
WF centre and spread 9 (-0.000000, 1.904992, 1.904992) 0.96557489
WF centre and spread 10 (-0.000000, 1.904992, 1.904992) 0.74589254
WF centre and spread 11 (0.000000, 1.904992, 1.904992) 0.96557379
WF centre and spread 12 (1.904992, 0.000000, 1.904992) 0.96557489
WF centre and spread 13 (1.904992, -0.000000, 1.904992) 0.96557379
WF centre and spread 14 (1.904992, -0.000000, 1.904992) 0.74589254
Sum of centres and spreads (20.954915, 20.954915, 20.954915) 10.49436382

Usually, 3d orbitals have a spread of less than 1 , and the O 2p orbitals have a spread of less than 2 .

3.1.3 Step 2: Run TB2J

Before running TB2J, an extra file, which contains the atomic structure, needs to be prepared. It can be either a VASP
POSCAR file. (For abinit, the abinit.in file is also fine if no fancy feature is used, like use of *, or units. POSCAR files
are recommended because they are simple. Note that the file extension are used to identify the format, for example,
Quantum ESPRESSO input should be name with *.pwi) The supported file format are can be found on the list in:
https://wiki.fysik.dtu.dk/ase/ase/io/io.html

(From version 0.6.2 this file is no more necessary as TB2J can read the atomic structures from the Wannier90 .win file).
The –posfile option will still be used by default if it is specified.)

With the WF Hamiltonian generated, we can calculate the exchange parameters now. In the scripts directory inside
your TB2J directory you find the wann2J.py script. Please make sure that it is executable and issue the command

wann2J.py --posfile abinit.in --efermi 6.15 --kmesh 4 4 4 --elements Mn --prefix_up␣
→˓abinito_w90_up --prefix_down abinito_w90_down --emin -10.0 --emax 0.0

The parameters are:

• efermi: Fermi energy in eV

• kmesh: k-point mesh. Default is 5 5 5

3.1. Use TB2J with Wannier90 9

https://wiki.fysik.dtu.dk/ase/ase/io/io.html

TB2J

• elements: the magnetic elements

• prefix_up: prefix for spin up channel of the Wannier90 output

• prefix_down: prefix for spin down channel of Wannier90 output.

• emin: the lower limit of the electron energy. (in eV, relative to Fermi energy.)

• emax: the upper limit of the electron energy. Should be zero. (Note: this parameter is no more useful will be
deprecated soon).

Now we should have the files containing the J parameters in the TB2J_results directory.

TB2J_results/
exchange.txt
Multibinit

exchange.xml
mb.files
mb.in

TomASD
exchange.exch
exchange.ucf

Vampire
input
vampire.mat
vampire.UCF

• exchange.txt: A human readable file.

• Multibinit directory: the files file, input file and xml file, which can be used as templates to run spin dynamics
in Multibinit.

• The input for a few spin dynamics codes (Tom’s ASD, and Vampire) are also included.

3.1.4 Noncollinear calculation

For calculations with non-collinear spin, the –spinor option should be used. It is also necessary to specify whether
in the Hamiltonian the order of the basis, either group by spin (orb1_up, orb2_up, . . . orb1_down, orb2_down, . . .)
or by orbital (orb1_up, orb1_down, orb2_up, orb2_down,. . .), with the –groupby option (either spin or orbital). The
–prefix_spinor option is used to specify the prefix of the Wannier90 outputs. Here is an example of the command:

wann2J.py --spinor --groupby spin --posfile abinit.in --efermi 6.15 --kmesh 4 4 4 --
→˓elements Mn --prefix_spinor abinito

3.2 Use TB2J with Siesta

In this tutorial we will learn how to use TB2J with Siesta. First we calculate the isotropic exchange in bcc Fe. Then we
calculate the isotropic exhange, anisotropic exchange and Dzyanoshinskii-Moriya interaction (DMI) parameters from
a calculation with spin-orbit coupling enabled. Before running this tutorial, please make sure that the sisl package is
installed.

10 Chapter 3. Tutorial

TB2J

3.2.1 Collinear calculation without SOC

Let’s start from the example of BCC Fe. The input files used can be found in the examples/Siesta/bccFe directory.

First, we do a siesta self consistent calculation with the BCC Fe primitive cell of bcc Fe has only one Fe atom. In the
example, we use the pseudopotential from the PseudoDojo dataset in the psml format. Note that at the moment the psml
support is implemented in the master development and “Max” branches of siesta (see https://gitlab.com/siesta-project/
siesta/-/wikis/Guide-to-Siesta-versions for the different versions of siesta, and https://gitlab.com/siesta-project/siesta/
-/wikis/How-to-build-the-master-version-of-Siesta for how to build it.). We need to save the electronic Kohn-Sham
Hamiltonian in the atomic orbital basis set with the options:

SaveHS True

and this option to use the netcdf format (if netcdf is enabled within the siesta version being used).

::
CDF.Save True

After that, we will have the files siesta.nc and DMHS.nc file, which contains the Hamiltonian and overlap matrix
information.

Now we can run the siesta2J.py command to calculate the exchange parameters:

siesta2J.py --fdf_fname siesta.fdf --elements Fe --kmesh 7 7 7

This first read the siesta.fdf, the input file for Siesta. It then read the Hamiltonian and the overlap matrices, calculate
the J with a 7× 7× 7 k-point grid. This allows for the calculation of exchange between spin pairs between 𝑖 and 𝑗 in a
7× 7× 7 supercell, where 𝑖 is fixed in the center cell. Note: the kmesh is not dense enough for a practical calculation.
Please check the convergence.

3.2.2 Non-collinear calculation

The anisotropic exchange and the DMI parameters can be calculated with non-collinear DFT calculation. The procedure
is almost the same as in the collinear calculation except that the parameters for non-collinear calculation must be set in
the Siesta input (Spin should be set to non-colinear or spin-orbit).

3.3 Use TB2J with OpenMX

In this tutorial we will learn how to use TB2J with OpenMX with the example of cubic SrMnO3. The example input
files can be found in the examples directory of

The interface to OpenMX is distributed as a plugin to TB2J called TB2J OpenMX under the GPL license,
which need to be installed separately, because code from OpenMX which is under the GPL license is used
in the parser of OpenMX files.

3.3. Use TB2J with OpenMX 11

https://gitlab.com/siesta-project/siesta/-/wikis/Guide-to-Siesta-versions
https://gitlab.com/siesta-project/siesta/-/wikis/Guide-to-Siesta-versions
https://gitlab.com/siesta-project/siesta/-/wikis/How-to-build-the-master-version-of-Siesta
https://gitlab.com/siesta-project/siesta/-/wikis/How-to-build-the-master-version-of-Siesta

TB2J

3.3.1 Install TB2J-OpenMX

pip install TB2J-OpenMX

3.3.2 running TB2J

In the DFT calculation, the ”HS.fileout on” options should be enabled, so that the Hamiltonian and the overlap matrices
are written to a ”.scfout“ file. Then we can run the command openmx2J.py. The necessary input are the path of the
calculation, the prefix of the OpenMX files, and the magnetic elements:

openmx2J.py -- prefix openmx --elements Fe --kmesh 7 7 7

openmx2J.py then read the openmx.xyz and the openmx.scfout files from the OpenMX output, and output the results
to TB2J_results. Note: the kmesh is not dense enough for a practical calculation.

3.4 Use TB2J with ABACUS

In this tutorial we will learn how to use TB2J with ABACUS. The TB2J-ABACUS interface is available since TB2J
version 0.8.0. There are three types of basis set in ABACUS, the plane-wave (PW), the linear-combinatio of atomic
orbitals (LCAO), and the LCAO-in-PW. With the LCAO basis set, TB2J can directly take the output and compute the
exchange parameters. For the other type of basis set, the Wannier90 interace can be used instead. In this tutorial we
will use LCAO.

3.4.1 Collinear calculation without SOC

Let’s start from the example of Fe. The example files can be found here:
https://github.com/mailhexu/TB2J_examples/tree/master/Abacus/Fe_no_SOC .

First do the ABACUS calculation. Note that the Kohn-Sham Hamiltonian and the overlap matrix is needed as the input
to TB2J. We need to put

out_mat_hs2 1

in the ABACUS INPUT file, so that the Hamiltonian matrix H(R) (in Ry) and overlap matrix S(R) will be written into
files in the directory OUT.${suffix} . In the INPUT, the line

sufffix Fe

specifies the suffix of the output. Thus the output will be in the directory OUT.Fe when the DFT calculation is finished.

In this calculation, we set the path to the directory of the DFT calculation, which is the current directory (”. “) and the
suffix to Fe.

Now we can run the abacus2J.py command to calculate the exchange parameters:

abacus2J.py --path . --suffix Fe --elements Fe --kmesh 7 7 7

This first read the atomic structures from th STRU file, then read the Hamiltonian and the overlap matrices
stored in the files named starting from “data-HR-” and “data-SR-” files. It also read the fermi energy from the
OUT.Fe/running_scf.log file.

With the command above, we can calculate the J with a 7x7x7 k-point grid. This allows for the calculation of exchange
between spin pairs between 7x7x7 supercell. Note: the kmesh is not dense enough for a practical calculation. For a

12 Chapter 3. Tutorial

TB2J

very dense k-mesh, the –rcut option can be used to set the maximum distance of the magnetic interactions and thus
reduce the computation cost. But be sure that the cutoff is not too small.

3.4.2 Non-collinear calculation with SOC

The DMI and anisotropic exchange are result of the SOC, therefore requires the DFT calculation to be done with SOC
enabled. To get the full set of exchange parameters, a “rotate and merge” procedure is needed, in which several DFT
calculations with either the structure or the spin rotated are needed. For each of the non-collinear calcualtion, we
compute the exchange parameters from the DFT calculation with the same command as in the collienar case.

abacus2J.py --path . --suffix Fe --elements Fe --kmesh 7 7 7

And then the “TB2J_merge.py” command can be used to get the final spin interaction parameters.

3.4.3 Parameters of abacus2J.py

We can use the command

abacus2J.py --help

to view the parameters and the usage of them in abacus2J.py.

TB2J version 0.8.0
Copyright (C) 2018-2024 TB2J group.
This software is distributed with the 2-Clause BSD License, without any warranty. For␣
→˓more details, see the LICENSE file delivered with this software.

usage: abacus2J.py [-h] [--path PATH] [--suffix SUFFIX] [--elements [ELEMENTS ...]] [--
→˓rcut RCUT] [--efermi EFERMI]

[--kmesh [KMESH ...]] [--emin EMIN] [--use_cache] [--nz NZ] [--cutoff␣
→˓CUTOFF]

[--exclude_orbs EXCLUDE_ORBS [EXCLUDE_ORBS ...]] [--np NP] [--
→˓description DESCRIPTION]

[--orb_decomposition] [--fname FNAME] [--output_path OUTPUT_PATH]

abacus2J: Using magnetic force theorem to calculate exchange parameter J from ABACUS␣
→˓Hamiltonian in the LCAO mode

options:
-h, --help show this help message and exit
--path PATH the path of the ABACUS calculation
--suffix SUFFIX the label of the ABACUS calculation. There should be an output␣

→˓directory called OUT.suffix
--elements [ELEMENTS ...]

list of elements to be considered in Heisenberg model.
--rcut RCUT range of R. The default is all the commesurate R to the kmesh
--efermi EFERMI Fermi energy in eV. For test only.
--kmesh [KMESH ...] kmesh in the format of kx ky kz. Monkhorst pack. If all the␣

→˓numbers are odd, it is Gamma
cenetered. (strongly recommended), Default: 5 5 5

(continues on next page)

3.4. Use TB2J with ABACUS 13

TB2J

(continued from previous page)

--emin EMIN energy minimum below efermi, default -14 eV
--use_cache whether to use disk file for temporary storing wavefunctions and␣

→˓hamiltonian to reduce memory
usage. Default: False

--nz NZ number of integration steps. Default: 50
--cutoff CUTOFF The minimum of J amplitude to write, (in eV). Default: 1e-7 eV
--exclude_orbs EXCLUDE_ORBS [EXCLUDE_ORBS ...]

the indices of wannier functions to be excluded from magnetic␣
→˓site. counting start from 0.

Default is none.
--np NP number of cpu cores to use in parallel, default: 1
--description DESCRIPTION

add description of the calculatiion to the xml file. Essential␣
→˓information, like the xc

functional, U values, magnetic state should be given.
--orb_decomposition whether to do orbital decomposition in the non-collinear mode.␣

→˓Default: False.
--fname FNAME exchange xml file name. default: exchange.xml
--output_path OUTPUT_PATH

The path of the output directory, default is TB2J_results

3.5 Parameters in calculation of magnetic interaction parameters

3.5.1 List of parameters:

The list of parameter can be found using:

wann2J.py --help

or

siesta2J.py --help

The parameter will be explained in the following text.

• kmesh: Three integers to specify the size of a Monkhorst-Pack mesh. This is the mesh of k-points used to
calculate the Green’s functions. The real space supercell in which the magnetic interactions are calculated, has
the same size as the k-mesh. For example, a 7× 7× k-mesh is linked with a 7× 7× supercell, the atom 𝑖 resides
in the center cell, whereas the 𝑗 atom can be in all the cells in the supercell.

• efermi: The Fermi energy in eV. For insulators, it can be inside the gap. For metals, it should be the same as in
the DFT calculation. Due to the different algorithms in the integration of the density, the Fermi energy could be
slightly shifted from the DFT value.

• emin, emax, and nz: During the calculation, there is a integration
∫︀ 𝑒𝑚𝑎𝑥

𝑒𝑚𝑖𝑛
𝑑𝜖 calculation. The emin and emax

are relative values to the Fermi energy. The emax should be 0. The emin should be low enough so that all the
electronic states that affect the magnetic interactions are integrated. This can be checked with the local density
of the states. Below the emin, the spin up and down density of states should be almost identical. The nz is the
number of steps in this integration. The emax can be used to adjust the integration if we want to simulate the
effect of the charge doping. This is with the approximation that there is only a rigid shift of the band structure.
However, it is recommended to dope charge within the DFT then this approximation is not needed. The emax
parameter will thus be deprecated soon.

14 Chapter 3. Tutorial

TB2J

• rcut: rcut is the cutoff distance between two ion pairs between which the magnetic interaction parameters are
calculated. By default, all the pairs inside the supercell defined by the kmesh

• exclude_orbs: the indeces of orbitals, whose contribution will not be counted in the magnetic interaction. It is a
list of integers. The indices are zero based.

3.6 Averaging multiple parameters

When the spins of sites 𝑖 and 𝑗 are along the directions m̂𝑖 and m̂𝑗 , respectively, the components of J𝑎𝑛𝑖
𝑖𝑗 and D𝑖𝑗 along

those directions will be unphysical. In other words, if û is a unit vector orthogonal to both m̂𝑖 and m̂𝑗 , we can only
obtain the projections û𝑇J𝑎𝑛𝑖

𝑖𝑗 û and û𝑇D𝑖𝑗û. Notice that for collinear systems, there will be two orthonormal vectors
û and v̂ that are also orthogonal to m̂𝑖 and m̂𝑗 .

The projection for J𝑎𝑛𝑖
𝑖𝑗 can be written as

û𝑇J𝑎𝑛𝑖
𝑖𝑗 û = 𝐽𝑥𝑥

𝑖𝑗 𝑢2
𝑥 + 𝐽𝑦𝑦

𝑖𝑗 𝑢2
𝑦 + 𝐽𝑧𝑧

𝑖𝑗 𝑢
2
𝑧 + 2𝐽𝑥𝑦

𝑖𝑗 𝑢𝑥𝑢𝑦 + 2𝐽𝑦𝑧
𝑖𝑗 𝑢𝑦𝑢𝑧 + 2𝐽𝑧𝑥

𝑖𝑗 𝑢𝑧𝑢𝑥,

where we considered J𝑎𝑛𝑖
𝑖𝑗 to be symmetric. This equation gives us a way of reconstructing J𝑎𝑛𝑖

𝑖𝑗 by performing TB2J
calculations on rotated spin configurations. If we perform six calculations such that û lies along six different directions,
we obtain six linear equations that can be solved for the six independent components of J𝑎𝑛𝑖

𝑖𝑗 . We can also reconstruct
the D𝑖𝑗 tensor in a similar way. Moreover, if the system is collinear then only three different calculations are needed.

To account for this, TB2J provides scripts to rotate the structure and merge the results; they are named TB2J_rotate.py
and TB2J_merge.py. The TB2J_rotate.py reads the structue file and generates three(six) files containing the rotated
structures whenever the system is collinear (non-collinear). The –noncollinear parameters is used to specify wheter
the system is noncollinear. The output files are named atoms_i (i = 0, . . . , 5), where atoms_0 contains the unrotated
structure. A large number of file formats is supported thanks to the ASE library and the output structure files format is
provided through the –format parameter. An example for using the rotate file with a collinear system is:

TB2J_rotate.py BiFeO3.vasp --ftype vasp

If te system is noncollinear, then we run the following instead:

TB2J_rotate.py BiFeO3.vasp --ftype vasp --noncollinear

The user has to perform DFT single point energy calculations for the generated structures in different directories,
keeping the spins along the z direction, and run TB2J on each of them. After producing the TB2J results for the
rotated structures, we can merge the DMI results with the following command by providing the paths to the TB2J
results of the three cases:

TB2J_merge.py BiFeO3_1 BiFeO3_2 BiFeO3_0

Here the last directory will be taken as the reference structure. Note that the whole structure are rotated w.r.t. the
laboratory axis but not to the cell axis. Therefore, the k-points should not be changed in both the DFT calculation and
the TB2J calculation.

A new TB2J_results directory is then made which contains the merged final results.

Another method is to do the DFT calculation with spins rotated globally. That is they are rotated with respect to an
axis, but their relative orientations remain the same. This can be specified in the initial magnetic moments from a DFT
calculation. For calculations done with SIESTA, there is a script that rotates the density matrix file along different
directions. We can then use these density matrix files to run single point calculations to obtain the required rotated
magnetic configurations. An example is:

TB2J_rotateDM.py --fdf_fname /location/of/the/siesta/*.fdf/file

3.6. Averaging multiple parameters 15

TB2J

As in the previous case, we can use the –noncollinear parameter to generate more configurations. The merging process
is performed in the same way.

3.7 The ligand spin problem: downfolding the Heisenberg Hamilto-
nian

Usually the magnetic moments are dominantly on the metal sites. But in some structures, the spin magnetic momen-
tums on the ligand are non-negligible. They are however, not due to the spin splitting of the ligand atom, but the
hybridization to the orbitals of surrounding atoms (often transitional metals). Therefore, the ligand magnetic moments
are not independent, and will move together with the that of the metal.

In these cases, a “downfolding” method could be used to used to get an effective Heisenberg model with only the transi-
tional metal spins as independent variables from the exchange parameters with both transitional metal spins and ligand
spins. Note that the current method is only valid for ferromagnetic structures. The extenstion to antiferromagnetic and
non-collinear magnetic structures are under development. Even for FM state, this result of this method should still be
carefully validated. We don’t recommend the usage unless you’re sure about what you’re doing.

3.7.1 Usage:

To do the downfolding, one has to first generate the Heisenberg Hamiltonian with both the transitional metal and the
ligands as magnetic elements, e.g. in CrI3,

wann2J.py --elements Cr I

The result is saved to TB2J_results directory. Then run the downfolding to get the Cr only effective exchange parame-
ters, e.g.

TB2J_downfold.py --inpath TB2J_results --outpath TB2J_results_downfold --metals Cr --
→˓ligands I

will generate the downfolded result to TB2J_results_downfold.

3.8 Decompose the exchange into orbital contributions.

The exchange J between two atoms can be decomposed into the sum of all the pairs of orbitals. For two atoms with m
and n orbitals respectively, the decomposition can be written as m by n matrix.

Here is an example:

Since version 0.6.4, the name of the orbitals are written in the Orbital contribution section. With the Wannier90 input,
the names of these orbitals are not known, thus are named as orb_1, orb_2, etc. One can search the Wannier initial
projectors to see what are these orbitals.

Here is an example of cubic SrMnO3,

===
Orbitals used in decomposition:
The name of the orbitals for the decomposition:
Mn1 : ['orb_1', 'orb_2', 'orb_3', 'orb_4', 'orb_5']

===
(continues on next page)

16 Chapter 3. Tutorial

TB2J

(continued from previous page)

Exchange:
i j R J_iso(meV) vector distance(A)

--
Mn1 Mn1 (0, 0, 1) -7.1027 (0.000, 0.000, 3.810) 3.810

J_iso: -7.1027
Orbital contributions:
[[3.184 -0. -0. 0. -0.]
[-0. -5.06 0. -0. 0.]
[-0. 0. -5.06 -0. 0.]
[0. -0. -0. -0.121 -0.]
[-0. 0. 0. 0. -0.047]]

One can see that the contribution from the (orb_1, orb_1) pair is 3.184, and that from (orb_2, orb_2) is -5.06. Searching
the wannier90 input, we can find that the orb1 and orb_2 are the dz2 and dxz orbitals, respectively.

For Siesta input, the names are known, and printed in the “orbitals use in decomposition” section. They are not the
exactly the name of the siesta basis (like 3dxyZ1). For example, with a double-zeta basis set, the a 3dxy orbital might
be splitted into 3dxyZ1 and 3dxyZ2. The contribution of them are summed up to make it more concise. Often, the
contribution from some orbitals are negligible. In the siesta2J.py command, it’s possible to specify the orbitals to be
considered in the decompostion. For example, if only the 3dxy contribution of Cr is needed, one can write

siesta2J.py --elements Fe_3d

If both the 3d and 4s are to be considered, one can write:

siesta2J.py --elements Fe_3d_4s

For example, the bcc Fe, when only the 3d orbitals are turned on, we get:

==
Orbitals used in decomposition:
The name of the orbitals for the decomposition:
Fe1 : ('3dxy', '3dyz', '3dz2', '3dxz', '3dx2-y2')

==
Exchange:

i j R J_iso(meV) vector distance(A)
--

Fe1 Fe1 (-1, 0, 0) 17.6873 (-2.467, 0.000, 0.000) 2.467
J_iso: 17.6873
Orbital contributions:
[[11.462 -0. 0.297 -0. 0.096]
[-0. 3.69 -0. -0.214 -0.]
[-0.163 -0. 3.215 -0. -3.262]
[-0. 0.396 -0. 11.451 -0.]
[-0.055 0. -3.263 0. -4.248]]

where we can find in the x direction, the dxy and dxz orbitals contribute mostly to the ferromagnetic interaction,
whereas the 3dx2-y2 contribution is antiferromagnetic.

Note that the option for selection of orbitals is not available in the Wannier90 interface, as the informations for labelling
the orbitals are not included in the Wannier90 output (sometimes it is even not possible to do so as the Wannier functions
are not necessarily atomic-orbital like).

3.8. Decompose the exchange into orbital contributions. 17

TB2J

3.8.1 Decomposition in non-collinear mode

In collinear mode, the orbital decomposition of the isotropic exchange, DMI, and anisotropic exchange is turned off
by default as there are a lot of terms and boast the size of the output files for large systems. It could be turned
on with the –orb_decomposition option. The orbital decomposition will be written into another file called ex-
change_orb_decomposition.txt. In this file, the orbital decompositions for the isotropic exchange, the three DMI vector
elements (Dx, Dy, Dz) and the nine anisotropic exchange matrix elements, will be outputed as m by n matrices for each
element.

3.9 The output of TB2J

In the following we describe the output files which TB2J produces. By running wann2J.py or siesta2J.py, a directory
with the name TB2J_results (or the directory specified by the –output_path) will be generated, which contains the
following output files:

• exchange.out: A human readable output file, which summarizes the results.

• Multibinit: A directory containing output which can be read directly by the Multibinit code.

• The exchange.out file contains three sections: cell, atoms and exchange. The cell section contains the lattice
parameter matrix. The atoms section contains the positions, charges (for verification) and magnetic moments of
the atoms: see example below

==
Information:
Exchange parameters generated by TB2J 0.2.5.
==
Cell (Angstrom):
0.030 3.950 3.950
3.950 0.030 3.950
3.950 3.950 0.030

==
Atoms:
(Note: charge and magmoms only count the wannier functions.)
Atom_number x y z w_charge M(x) M(y) M(z)
Bi1 0.2413 0.2413 0.2413 2.1538 -0.0015 0.0000 -0.0044
Bi2 4.2060 4.2060 4.2060 2.1538 0.0000 0.0000 0.0044
Fe1 2.0165 2.0165 2.0165 6.3564 -0.0260 0.0000 3.7927
Fe2 5.9812 5.9812 5.9812 6.3564 -0.0176 0.0000 -3.7927
O1 5.5238 2.1558 3.9388 4.8306 -0.0013 0.0000 -0.0705
.....
Total 46.0038 -0.0493 0.0000 -0.0000

==
Exchange:
i j R J_iso(meV) vector distance(A)
--
→˓----
Fe2 Fe1 (0, 1, 1) -28.9371 (3.934, 0.015, 0.015) 3.934
J_iso: -28.9371
[Testing!] Jprime: -59.620, B: -15.342
[Testing!] DMI: (-0.5191 1.3581 0.1090)

(continues on next page)

18 Chapter 3. Tutorial

TB2J

(continued from previous page)

[Testing!] J_ani:
[[0. -0.002 0.047]
[-0.002 0. -0.154]
[0.047 -0.154 0.]]

Here, the charge and magnetic moment of each atom are only integrated with the WFs attached to this atom. As such
they can differ from the quantities coming from the direct DFT output, as not all bands are used in the construction of
WFs. The WF charges should be integers, for LCAO the values depend on the band energy cutoffs. In addition, the
exclusion of very deep lying levels from the calculation of 𝐽 can also lead to deviations in the charges which might
appear both for WFs and for LCAO. Another source of difference between the TB2J charges and magnetic moments
and the DFT ones is the integration volume around the atoms, which is not necessarily the same. However, for localized
𝑑 and 𝑓 orbitals the magnetic moments should be close to their DFT counterparts, for TB2J to yield correct results for
the parameters. Large differences between the TB2J and DFT values indicate that something may have gone wrong:
either in in the contour integration

∫︀ 𝐸𝐹 𝑑𝜖 used in TB2J, or in the construction of the Wannier functions (incorrect
wannierization process or too small WF basis set). Often, it comes from excluding an orbital that is important for the
magnetic interaction in the studied system. In the case of metallic system, the Fermi energy might have to be slightly
shifted with respect to the DFT reference due to different numerical method used in the integration of charge density.

Each pair of atoms is labeled by three parameters, the index 𝑖, 𝑗 and 𝑅, where 𝑖 and 𝑗 are the indices in the unit cell.
The vector �⃗� specifies the cell the atom 𝑗 is translated to, i.e. the reduced positions of the two atoms are �⃗�𝑖 and �⃗�𝑗 + �⃗�
, respectively. By default, the interaction is calculated within a supercell corresponding to the k-mesh. For example,
with a 7× 7× 7 k-mesh, all 𝑖𝑗 pairs will be produced for the spin labeled 𝑖 in the center cell of a 7× 7× 7 supercell.
With the rcut flag, only the parameters for 𝑖𝑗 pairs within a distance of rcut are calculated. The exchange parameters
are reported as follows: magnetic atom 𝑖 connected with magnetic atom 𝑗, 𝑅 is the lattice vector between the unit cells
containing 𝑖 and 𝑗, the value of 𝐽 for this pair of magnetic atoms in meV, the vector connecting them, and the distance
between the pair of atoms. If SOC is enabled, the DMI and anisotropic 𝐽𝑎𝑛𝑖 parameters are given in addition. The
DMI vectors �⃗� and the anisotropic 𝐽𝑎𝑛𝑖 are printed as vectors and matrices, respectively.

Apart from the main exchange.out file, TB2J delivers several other outputs, which provide the input for spin dynamics
(SD) and Monte Carlo (MC) simulations. TB2J is interfaced with several SD and MC codes. It has native support
to the Multibinit code delivered as part of the Abinit code since version 9.0 . The TB2J_results/Multibinit directory
contains the templates of input files for this code. One can usually run spin-dynamics with slight or no modification of
these files. “Testing” inputs are also generated for Vampire and Thomas Ostler’s GPU-ASD code.

3.9. The output of TB2J 19

TB2J

20 Chapter 3. Tutorial

CHAPTER

FOUR

APPLICATIONS

4.1 Magnon band structure from TB2J output

In this section we show an application of calculating the magnon band structure using the TB2J results.

There is a script within the TB2J package: TB2J_magnon.py, which can be used to plot the magnon band structure.
We can show its usage by:

TB2J_magnon.py --help

usage: TB2J_magnon.py [-h] [--fname FNAME] [--qpath QPATH] [--figfname FIGFNAME] [--
→˓show]

TB2J_magnon: Plot magnon band structure from the TB2J magnetic interaction parameters

optional arguments:
-h, --help show this help message and exit
--fname FNAME exchange xml file name. default: exchange.xml
--qpath QPATH The names of special q-points. If not given, the path will be␣

→˓automatically choosen. See https://wiki.fysik.dtu.dk/ase/ase/dft/kpoints.html for the␣
→˓table of special kpoints and the default path.
--figfname FIGFNAME The file name of the figure. It should be e.g. png, pdf or other␣

→˓types of files which could be generated by matplotlib.
--show whether to show magnon band structure.

The input file specified to the –fname parameter is by default exchange.xml file, which is the output in the Multibinit
xml format, as can be found in the TB2J_results/Multibinit directory.

Here we take the BCC Fe as an example. After we have the TB2J_results directory, we can go to the Multibinit directory
and find the exchange.xml file. The q-path can be generated automatically from the atomic structure information, using
the [ASE][https://wiki.fysik.dtu.dk/ase/ase] library. We need to specify a path of q-points if the default is not what we
want. The default k-path and the labels of the special kpoints can be found at this page. For example, we want a path
of “Gamma-N-P-Gamma-H-N” instead of the default, it can be given by:

TB2J_magnon.py --qpath GNPGHN --figfname magnon.png --show

The magnon band structure is then written to a By using the –show parameter, the band structure is shown on screen.

From version v0.7.5, the infomation for plotting the band structure is written into a json file(magnon_band.json), to-
gether with the script for parsing the file and plot the band structure (plot_magnon_from_json_file.py).

From version v0.7.7, there is a script to plot the magnon density of states.

21

https://wiki.fysik.dtu.dk/ase/ase
https://wiki.fysik.dtu.dk/ase/ase/dft/kpoints.html

TB2J

Fig. 1: exchange_magnon

22 Chapter 4. Applications

TB2J

TB2J_magnon_dos.py --help
usage: TB2J_magnon_dos.py [-h] [-p PATH] [-n NPOINTS] [-w WINDOW WINDOW] [-k KMESH KMESH␣
→˓KMESH]

[-s SMEARING_WIDTH] [-g] [-Jq] [--show] [-f FIG_FILENAME] [-t␣
→˓TXT_FILENAME]

Plot magnon DOS

options:
-h, --help show this help message and exit
-p PATH, --path PATH path to exchange.xml
-n NPOINTS, --npoints NPOINTS

number of points in the energy
-w WINDOW WINDOW, --window WINDOW WINDOW

energy window for the dos, two numbers giving the lower and␣
→˓upper bound
-k KMESH KMESH KMESH, --kmesh KMESH KMESH KMESH

k mesh
-s SMEARING_WIDTH, --smearing_width SMEARING_WIDTH

Gauss smearing width in meV. Default is 10 meV.
-g, --gamma gamma centered k mesh
-Jq use Jq
--show show the figure
-f FIG_FILENAME, --fig_filename FIG_FILENAME

output filename for figure.
-t TXT_FILENAME, --txt_filename TXT_FILENAME

output filename of the data for the magnon DOS. Default: magnon_
→˓dos.txt

For example, with the following command, we get the DOS for bcc Fe.

TB2J_magnon_dos.py --show -s 10 -k 25 25 25 -f magnon_dos.png --show

The energies and the DOS are also saved to a txt file specified. The two columns of the file are the energies, and the
DOS, respectively. It can be used for plotting the DOS if you want to plot in your own style.

4.2 Application: Spin Dynamics

The output of TB2J can be directly readed by several atomistic spin dynamics and Monte Carlo code. Currently TB2J
can provide output for MULTIBINIT and Vampire.

4.2.1 Interface with Multibinit

Here we show how to use MULTIBINIT, a second principles code which can do spin dynamics. It is a part of the
ABINIT package since version 9.0. The tutorial of the spin dynamics can be found on MULTIBINIT tutorial page.

Here we briefly describe how to run spin dynamics with MULTIBINIT from the TB2J outputs to with an example of
BiFeO3. The example files can be found from the examples/Siesta/BiFeO3 directory.

In the TB2J_results/Mutlbinit directory, there are three files: exchange.xml, mb.in, and mb.files file. The exchange.xml
file contains the Heisenberg parameters, the mb.in file is an input to the MULTIBINIT code, in which the parameters
for the spin dynamics are given:

4.2. Application: Spin Dynamics 23

ABINIT

TB2J

Fig. 2: magnon_dos

24 Chapter 4. Applications

TB2J

prt_model = 0

#--
#Monte carlo / molecular dynamics
#--
dynamics = 0 ! disable molecular dynamics

ncell = 28 28 28 ! size of supercell.
#---
#Spin dynamics
#--
spin_dynamics=1 ! enable spin dynamics
spin_mag_field= 0.0 0.0 0.0 ! external magnetic field
spin_ntime_pre = 10000 ! warming up steps.
spin_ntime =10000 ! number of steps.
spin_nctime=100 ! number of time steps between two nc file write
spin_dt=1e-15 s ! time step.
spin_init_state = 1 ! FM initial state. May cause some trouble

spin_temperature=0.0

spin_var_temperature=1 ! switch on variable temperature calculation
spin_temperature_start=0 ! starting point of temperature
spin_temperature_end=1300 ! ending point of temperature.
spin_temperature_nstep= 52 ! number of temperature steps.

spin_sia_add = 1 ! add a single ion anistropy (SIA) term?
spin_sia_k1amp = 1e-6 ! amplitude of SIA (in Ha), how large should be used?
spin_sia_k1dir = 0.0 0.0 1.0 ! direction of SIA

spin_calc_thermo_obs = 1 ! calculate thermodynamics related observables

We can modify the default supercell size (ncell) and the temperature range to do spin dynamics in a temperature from
0K to 1300K in order to calculate the Neel temperature. We can run

mpirun -np 4 multibinit --F03 < mb.files

to run the spin dynamics. A mb.out.varT file is then generated, which has the volume heat capacit 𝐶𝑣 , magnetic
susceptibility
𝑐ℎ𝑖, and normalized total magnetic moment. They can be plotted as function of temperature as below, from which we
can find the Neel temperature.

4.2.2 Interface with Vampire

Warning: there might be compatibility issues in the TB2J-Vampire interface for some versions, please contact the
developpers if you encounter some of them.

A few notes about the Vampire input format:

There are 6 exchange interaction format in Vampire.

• isotropic

• vectorial

4.2. Application: Spin Dynamics 25

TB2J

26 Chapter 4. Applications

TB2J

• tensorial

• normalised-isotropic

• normalised-vectorial

• normalised-tensorial

Since version 0.7.1, the TB2J-Vampire output take the “tensorial” format, in which the exchange values are 2 times that
in the convention of TB2J. The anisotropic exchange and DMI are not written before version 0.7.2. They are included
since then.

4.3 Writting eigen values and eigenvectors of J(q)

In this section we show how to write the eigen values and eigen vectors for a given q-point mesh. With this information,
we can estimate the lowest energy spin configuration in the supercells conmensurate to the q-point mesh.

There is a script within the TB2J package: TB2J_eigen.py, which can be write the eigen value and eigen vectors. The
command should be run under the TB2J_results directory.

We can show its usage by:

TB2J_eigen.py --help

TB2J version 0.7.1.1
Copyright (C) 2018-2020 TB2J group.
This software is distributed with the 2-Clause BSD License, without any warranty. For␣
→˓more details, see the LICENSE file delivered with this software.

usage: TB2J_eigen.py [-h] [--path PATH] [--qmesh [QMESH ...]] [--gamma] [--output_fname␣
→˓OUTPUT_FNAME]

TB2J_eigen.py: Write the eigen values and eigen vectors to file.

optional arguments:
-h, --help show this help message and exit
--path PATH The path of the TB2J_results file
--qmesh [QMESH ...] qmesh in the format of kx ky kz. Monkhorst pack or Gamma-

→˓centered.
--gamma whether shift the qpoint grid to Gamma-centered. Default: False
--output_fname OUTPUT_FNAME

The file name of the output. Default: eigenJq.txt

4.3. Writting eigen values and eigenvectors of J(q) 27

TB2J

28 Chapter 4. Applications

CHAPTER

FIVE

EXTENDING TB2J

In this section we show how to extend TB2J to interface with other first principles or similar codes and to write the
output formats useful for codes such as spin dynamics.

5.1 Interface TB2J with other first principles or similar codes.

To interface a DFT code with TB2J, one has only to implement a tight-binding-like model which has certain methods
and properties implemented. TB2J make use of the duck type feature of python, thus any class which has these things
can be plugged in. Then the object can be inputted to the TB2J.Exchange class.

The methods and properties of AbstractTB class is listed as below.

class TB2J.myTB.AbstractTB(R2kfactor, nspin, norb)

HS_and_eigen(kpts)
get Hamiltonian, overlap matrices, eigenvalues, eigen vectors for all kpoints.

Param

• kpts: list of k points.

Returns

• H, S, eigenvalues, eigenvectors for all kpoints

• H: complex array of shape (nkpts, nbasis, nbasis)

• S: complex array of shape (nkpts, nbasis, nbasis). S=None if the basis set is orthonormal.

• evals: complex array of shape (nkpts, nbands)

• evecs: complex array of shape (nkpts, nbasis, nbands)

get_hamR(R)
get the Hamiltonian H(R), array of shape (nbasis, nbasis)

get_orbs()

returns the orbitals.

is_siesta

𝛼 used in 𝐻(𝑘) =
∑︀

𝑅 𝐻(𝑅) exp(𝛼𝑘 ·𝑅), Should be 2𝜋𝑖 or −2𝜋𝑖

nbasis

nbasis=nspin*norb

29

TB2J

norb

number of orbitals. Each orbital can have two spins.

nspin

number of spin. 1 for collinear, 2 for spinor.

xcart

The array of cartesian coordinate of all basis. shape:nbasis,3

xred

The array of cartesian coordinate of all basis. shape:nbasis,3

To pass the tight-binding-like model to the Exchange class is quite simple, here I take the sisl interface as an example

read hamiltonian using sisl
fdf = sisl.get_sile(fdf_fname)
H = fdf.read_hamiltonian()
wrap the hamiltonian to SislWrapper
tbmodel = SislWrapper(H, spin=None)
pass to ExchangeNCL
exchange = ExchangeNCL(

tbmodels=tbmodel,
atoms=atoms,
efermi=0.0,
magnetic_elements=magnetic_elements,
kmesh=kmesh,
emin=emin,
emax=emax,
nz=nz,
exclude_orbs=exclude_orbs,
Rcut=Rcut,
ne=ne,
description=description)

exchange.run()

In which the SislWrapper is a AbstractTB-like class which use sisl to read the Hamiltonian and overlap matrix from
Siesta output.

5.2 Extend the output to other formats

The calculated magnetic interaction parameters, together with other informations, such as the atomic structure and
some metadata, are saved in “SpinIO” object. By making use of it, it is easy to output the parameters to the file format
needed. Some parameters, which cannot be calculated in TB2J can also be inputted so that they can be written to the
files. The list of stored data is listed below, by using which it should be easy to write the output function as a member
of the SpinIO class. A method write_some_format(path) can be implemented and called in the write_all method. Then
the format is automatically written after the TB2J calculation.

class TB2J.io_exchange.SpinIO(atoms, spinat, charges, index_spin, orbital_names={}, colinear=True,
distance_dict=None, exchange_Jdict=None, Jiso_orb=None,
DMI_orb=None, Jani_orb=None, dJdx=None, dJdx2=None,
dmi_ddict=None, Jani_dict=None, biquadratic_Jdict=None,
debug_dict=None, k1=None, k1dir=None, NJT_Jdict=None,
NJT_ddict=None, damping=None, gyro_ratio=None,
write_experimental=True, description=None)

30 Chapter 5. Extending TB2J

TB2J

Jani_dict

The dictionary of anisotropic exchange. The vlaues are matrices of shape (3,3).

atoms

atomic structures, ase.Atoms object

colinear

If the calculation is collinear or not

dmi_ddict

The dictionary of DMI. the key is the same as exchange_Jdict, the values are 3-d vectors (Dx, Dy, Dz).

get_DMI(i, j, R, default=None)

get_J(i, j, R, default=None)

get_J_tensor(i, j, R, iso_only=False)
Return the full exchange tensor for atom i and j, and cell R. param i : spin index i param j: spin index j
param R (tuple of integers): cell index R

get_Jani(i, j, R, default=None)
Return the anisotropic exchange tensor for atom i and j, and cell R. param i : spin index i param j: spin
index j param R (tuple of integers): cell index R

get_Jiso(i, j, R, default=None)

get_charge_iatom(iatom)

get_charge_ispin(i)

get_full_Jtensor_for_Rlist(asr=False, iso_only=False)

get_full_Jtensor_for_one_R(R)
Return the full exchange tensor of all i and j for cell R. param R (tuple of integers): cell index R returns:

Jmat: (3*nspin,3*nspin) matrix.

get_spin_iatom(iatom)

get_spin_ispin(i)

get_symbol_number_ispin(symnum)

Return the spin index for a given symbol number.

gyro_ratio

Gyromagnetic ratio for each atom

has_bilinear

Whether there is anisotropic exchange term

has_dmi

Whether there is DMI.

has_exchange

whether there is isotropic exchange

i_spin(i)

iatom(i)

5.2. Extend the output to other formats 31

TB2J

property ind_atoms

classmethod load_pickle(path='TB2J_results', fname='TB2J.pickle')

model(path)

plot_DvsR(ax=None, fname=None, show=False)

plot_JanivsR(ax=None, fname=None, show=False)

plot_JvsR(ax=None, color='blue', marker='o', fname=None, show=False, **kwargs)

plot_all(title=None, savefile=None, show=False)

spinat

spin for each atom. shape of (natom, 3)

write_Jq(kmesh, path, gamma=True, output_fname='EigenJq.txt', **kwargs)

write_all(path='TB2J_results')

write_multibinit(path)

write_pickle(path='TB2J_results', fname='TB2J.pickle')

write_tom_format(path)

write_txt(*args, **kwargs)

write_uppasd(path)

write_vampire(path)

32 Chapter 5. Extending TB2J

CHAPTER

SIX

ROADMAP OF TB2J

6.1 Features to be implemented

• [] Magnon band structure for non-FM structures.

• [] Downfolding of ligand-contribution in non-collinear case.

• [] Generalize the merge method.

• [] Spin-lattice coupling.

• [] Single-ion anisotropy.

33

TB2J

34 Chapter 6. Roadmap of TB2J

CHAPTER

SEVEN

ECOSYSTEM

7.1 Input to TB2J

TB2J starts from electron tight-binding-like Hamiltonian with localized basis set. Currently, this includes the Wannier-
function Hamiltonian built with Wannier90, and the pseudo-atomic-orbital (PAO) based codes (SIESTA and OpenMX).

• WANNIER90: Wannier90 is an open-source code (released under GPLv2) for generating maximally-localized
Wannier functions and using them to compute advanced electronic properties of materials with high efficiency
and accuracy. Many electronic structure codes have an interface to Wannier90, including Quantum ESPRESSO,
Abinit, VASP, Siesta, Wien2k, Fleur, OpenMX and GPAW.

• SIESTA: SIESTA is both a method and its computer program implementation, to perform efficient electronic
structure calculations and ab initio molecular dynamics simulations of molecules and solids. SIESTA’s efficiency
stems from the use of a basis set of strictly-localized atomic orbitals. A very important feature of the code is
that its accuracy and cost can be tuned in a wide range, from quick exploratory calculations to highly accurate
simulations matching the quality of other approaches, such as plane-wave methods. The parsing of the SIESTA
output files is through sisl.

• OpenMX: OpenMX (Open source package for Material eXplorer) is a software package for nano-scale material
simulations based on density functional theories (DFT), norm-conserving pseudopotentials, and pseudo-atomic
localized basis functions. The methods and algorithms used in OpenMX and their implementation are carefully
designed for the realization of large-scale ab initio electronic structure calculations on parallel computers based
on the MPI or MPI/OpenMP hybrid parallelism. The TB2J-OpenMX interface is packaged in TB2J-OpenMX
under the GPLv3 license.

• ABACUS ABACUS (Atomic-orbital Based Ab-initio Computation at UStc) is an open-source computer code
package aiming for large-scale electronic-structure simulations from first principles, developed at the Key Lab-
oratory of Quantum Information and Supercomputing Center, University of Science and Technology of China
(USTC) - Computer Network and Information Center, Chinese of Academy (CNIC of CAS). ABACUS support
three types of basis sets: pw, LCAO, and LCAO-in-pw. The TB2J-ABACUS interface can take the files from
LCAO mode of ABACUS directly to compute the exchange parameters. The Wannier90 interface can be used
with other types of basis set.

35

https://wannier.org/
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://wannier.org/download/#es-codes
http://www.quantum-espresso.org/
http://www.abinit.org/
https://www.vasp.at/
http://www.icmab.es/siesta
http://www.wien2k.at/
http://www.flapw.de/
http://www.openmx-square.org/
https://wiki.fysik.dtu.dk/gpaw/
https://siesta-project.org/siesta/
https://github.com/zerothi/sisl
https://www.openmx-square.org/
https://github.com/mailhexu/TB2J-OpenMX
https://abacus.ustc.edu.cn/main.htm

TB2J

7.2 Spin dynamics code interfaced with TB2J

TB2J can provide the input files containing the parameters for Heisenberg models to be used in spin-dynamics code.
Currently, TB2J is interfaced to MULTIBINIT and Vampire.

• MULTIBINIT: MULTIBINIT is a framework for the “second-principles” method. It is deployed in the ABINIT
package. It aims at automatic mapping first-principles model to effective models which reproduce the first-
principles precision but with much lower computational cost. Dynamics with multiple degrees of freedom,
including lattice distortion, spin, and electron can be included in the model. The spin part of MULTIBINIT
implements the atomistic spin dynamics from Heisenberg model and Landau-Lifshitz-Gilbert equations. TB2J
was initially built to provide the parameters for spin model in MULTIBINIT. The documenation of spin dynamics
can be found here.

• Vampire:Vampire is a high performance general purpose code for the atomistic simulation of magnetic materials.
Using a variety of common simulation methods it can calculate the equilibrium and dynamic magnetic properties
of a wide variety of magnetic materials and phenomena, including ferro, ferri and antiferromagnets, core-shell
nanoparticles, ultrafast spin dynamics, magnetic recording media, heat assisted magnetic recording, exchange
bias, magnetic multilayer films and complete devices.

7.3 Workflows

• AiiDA_TB2J_plugin: AiiDA_TB2J_plugin is a AiiDA plugin for high-throughput Siesta-TB2J calculations
within the framework of AiiDA.

7.4 Codes for Linear Spin Wave method and magnon band structure

• RAD-tools: RAD-tools is a python package for the spin Hamiltonian analysis (with built-in notation changes)
and magnon band structure calculation. It is interfaced directly with the TB2J .txt output (”exchange.out”) and
can compute the magnon band structure via the linear spin wave theory for ferromagnetic, antiferromagnetic
and spiral magnetic structures. Documentation of the usage can be found on the package website: if you know
python - use as library or if you do not know python - use console interface.

7.5 Related software without already-built interface with TB2J

There are many other tools which can be used together with TB2J, but the interface is not yet built (or made publicly
available).

• UppASD: The UppASD package is a simulation tool for atomistic spin dynamics at finite temperatures. The
program evolves in time the equations of motion for atomic magnetic moments in a solid. The equations take
the form of the Landau-Lifshitz-Gilbert (LLG) equation. For most of the applications done so far, the magnetic
exchange parameters of a classical Heisenberg Hamiltonian have been used in ASD simulations. The parameters
are extracted from ab-initio DFT codes.

• Spirit: Spirit is a modern cross-platform framework for spin dynamics. Its features includes: atomistic spin lat-
tice Heisenberg model including also DMI and dipole-dipole, Spin Dynamics simulations obeying the Landau-
Lifschitz-Gilbert equation, direct energy minimization with different solvers, Minimum Energy Path calculations
for transitions between different spin configurations, using the GNEB method. It provides a python package mak-
ing complex simulation workflows easy, desktop UI with powerful, live 3D visualisations and direct control of
most system parameters, and Modular backends including parallelization on GPU (CUDA) and CPU (OpenMP).

36 Chapter 7. Ecosystem

https://www.abinit.org/
https://www.abinit.org/
https://docs.abinit.org/tutorial/spin_model/
https://vampire.york.ac.uk/
https://github.com/antelmor/aiida_tb2j_plugin/tree/groundstate2/aiida_tb2j
https://www.aiida.net/
https://rad-tools.org/
https://rad-tools.org/en/stable/user-guide/library/magnon-dispersion.html
https://rad-tools.org/en/stable/user-guide/module/magnons/index.html
https://rad-tools.org/en/stable/user-guide/scripts/rad-plot-tb2j-magnons.html
https://www.physics.uu.se/forskning/materialteori/pagaende-forskning/uppasd/
https://spirit-code.github.io/

TB2J

• SpinW: SpinW is a MATLAB library that can plot and numerically simulate magnetic structures and excitations
of given spin Hamiltonian using classical Monte Carlo simulation and linear spin wave theory.

(If you know other software that can be used together with TB2J, or if you can help with interfacing with these codes,
please contact us.)

7.5. Related software without already-built interface with TB2J 37

https://spinw.org/

TB2J

38 Chapter 7. Ecosystem

CHAPTER

EIGHT

FREQUENTLY ASKED QUESTIONS.

8.1 How can I ask questions or report bugs?

We recommend posting the questions to the TB2J forum, https://groups.google.com/g/tb2j . Equivalently you can send
emails to tb2j@googlegroups.com . Another option is the discussion page on github: https://github.com/mailhexu/
TB2J/discussions . Before doing so, please read the documents and first try to find out if things are already there.

For reporting bugs, you can also open a issue on https://github.com/mailhexu/TB2J/issues .

If you meet with a bug, please first try to upgrade to the latest version to see if it is still there. And when reporting a
bug, please post the inputs, the TB2J command, and the version of TB2J being used if possible. Should these files be
kept secret, try to reproduce the bug in a simple system.

It is highly recommended to sign with your real name and affiliation. We appreciate the opportunity for us to get to
know the community.

Any kind of feedback will help us to make improvement. Don’t hesitate to get in contact!

8.2 Is it reasonable to do the DFT calculation in a magnetic non-
ground state for the calculation of the exchange parameters?

It depends on how “Heisenberg” the material is. In a ideal Heisenberg model, the exchange parameters does not depend
on the orientation of the spins. But in a real material it is only an approximation. Although it is a good approximation
for many materials, there could be other cases that it fails.

To do such computation can be very helpful when the magnetic ground state is unknown or difficult to compute with
DFT, e.g. huge supercell could be needed to model some complex magnetic states. In these cases, the estimation of
the exchange parameters could be useful for finding the ground state, or provide an estimation of the other magnetic
properties.

8.3 What quantities should I look into for validating the Wannier func-
tions?

First, compare the band structure from the DFT results and that from the Wannier Hamiltonian. Then check the Wannier
centers and Wannier spread to see if they are near the atom centers and the spread is small enough. From that you can
also get some limited sense on the symmetry of the Wannier functions. Another thing to check in the collinear-spin
case is the Re/Im ratio of the Wannier functions, which can be found in the Wannier90 output files.

39

https://groups.google.com/g/tb2j
mailto:tb2j@googlegroups.com
https://github.com/mailhexu/TB2J/discussions
https://github.com/mailhexu/TB2J/discussions
https://github.com/mailhexu/TB2J/issues

TB2J

8.4 How can I improve the Wannierization?

This web page provides some nice tips on how to build high quality Wannier functions:
<https://www.wanniertools.org/tutorials/high-quality-wfs>

8.5 How can I speedup the calculation?

TB2J can be used in parallel mode, with the –np option to specify the number of processes to be used. Note that it
can only use one computer node. So if you’re using a job management system like slurm or pbs, you need to explicitly
specify that the resources should be allocated in a single node.

8.6 Is is possible to reduce the memory usage?

TB2J need the wave functions for all k-points so it can use a lot of memory for large systems. In parallel mode, this is
more of a issue as each process will store one copy of it. However, you can use the –use-cache option so that the wave
functions are saved in a shared file by all the processes.

8.7 My exchange parameters are different from the results from total
energy methods. What are the possible reasons?

The exchange parameters from TB2J and those from the total energy are not completely the same so they can be
different.

• TB2J uses the magnetic force theorem and perturbation theory, which is more accurate if the spin
orientation only slightly deviate from the reference state.

The total energy method often flip the spins to get the energies with various spin configuration, therefore is
probably better at describing the interactions if the spin is more disordered.

• The results from the total energy method depends on the model it assumes.
For example, for system with long-range spin ineraction, or higher order interactions, these parameters are
re-normalized into the exchange parameters. Whereas TB2J does not, which makes the physically meaning
more tractable.

• The conventions should be checked when you compare the results from different sources.
Perhaps sometimes it is just a factor of 1/2 or whether the S is normalized to 1.

8.8 The results seems to contradict the experimental results. Why?

There are many possible reasons for the discrepancies between experimental and TB2J results. Here is a incomplete
list First There are many assumption made throughout the calculations, which could be unrealistic or unsuitable for the
specific material.

• In assumptions inherited from DFT calculations.
The Born-Oppenheimer approximation, the mean-field approximation, the LDA/GGA/metaGGA/etc.

• In the Heisenberg model:
The Heisenberg model is a oversimplified model. There could be terms which are important for the specific
system but are not considered in the model. For example, the higher order exchange interactions, and the
interaction between the spin and other degrees of freedom (e.g. lattice vibration, charge transfer).

40 Chapter 8. Frequently asked questions.

TB2J

• In the magnetic force theorem (MFT):

– The MFT is only exact as a perturbation to the ground state, which is accurate for the related properties,
eg. the magnon dispersion curve. But for properties related to large deviation from the ground state,
e.g. the critical temperature, the exchange parameters from the MFT might not be a good approxima-
tion (though in many material it is surprisingly good).

– The rigid spin rotation assumption is invalid, for example, when the spins are strongly delocalized.

8.9 Does TB2J work with 2D structures or molecules?

Yes.

8.9. Does TB2J work with 2D structures or molecules? 41

TB2J

42 Chapter 8. Frequently asked questions.

CHAPTER

NINE

CONTRIBUTORS

The main contributors to the TB2J package are:

• Xu He (mailhexu@gmail.com)

• Nicole Helbig

• Matthieu Verstraete

• Eric Bousquet

We welcome contributions. You can help us with: - extending the input format to other codes, e.g. first principles or
tight binding code. - extending the output to other spin dynamics code. - extending the algorithm so that it can be used
to calculate other parameters. - testing the validity of the methods implemented. - improving the documentation.

Please also feel free to contact us if you think there are other things you can help.

43

mailto:mailhexu@gmail.com

TB2J

44 Chapter 9. Contributors

CHAPTER

TEN

REFERENCES

The implementation details of TB2J:

Xu He, Nicole Helbig, Matthieu J. Verstraete, Eric Bousquet, TB2J: a python package for computing
magnetic interaction parameters. Computer Physics Communications, 107938 (2021).

The theoretical background for exchanges calculation is described in

• Initial idea of Green’s function method of calculating J.

Liechtenstein et al. J.M.M.M. 67,65-74 (1987), (aka LKAG)

• Isotropic exchange using Maximally localized Wannier function.

Korotin et al. Phys. Rev. B 91, 224405 (2015)

• Full exchange tensor.

Antropov et al. Physica B 237-238 (1997) 336-340

• Biqudratic term.

S. Lounis, P. H. Dederichs, Phys. Rev. B 82 180404(R) (2010)

Szilva et al, Phys. Rev. Lett. 111, 127204

• Downfold method
I. V. Solovyev, Phys. Rev. B 103, 104428

45

https://doi.org/10.1016/j.cpc.2021.107938
https://doi.org/10.1016/j.cpc.2021.107938
https://doi.org/10.1016/0304-8853(87)90721-9
http://link.aps.org/doi/10.1103/PhysRevB.91.224405
https://www.sciencedirect.com/science/article/pii/S0921452697002032
https://doi.org/10.1103/PhysRevB.82.180404
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.127204
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.104428

TB2J

46 Chapter 10. References

CHAPTER

ELEVEN

DEVELOPMENT

Note: This page is currently under development.

This tutorial gives a few guidelines on how to develop in TB2J.

We hope to make TB2J easily accessible to developers.

11.1 Code

11.1.1 Writting documenation

The documents are in the directory docs, and written in markdown and restructed text (rst) format.

In the docs/index.rst, the main page of the documentation and the links to the table of contents in the sidebar are defined.

In the docs/src, each topic is written in a rst or md file.

47

TB2J

48 Chapter 11. Development

CHAPTER

TWELVE

RELEASE NOTES

12.1 v0.8.2 March 4, 2024

TB2J can now read the “tb.dat” file instead of the “hr.dat”+”centers.xyz” files.

(>=0.8.2.2) Allow atom symbols+number format (e.g. Fe1, Fe2) in Wannier .win file, and in the –magnetic_elements
option. (issue46) Allow synthetic atom in siesta (>=0.8.2.4). Print actual emin in non-collinear mode. (0.8.2.5) Reduce
memory usage by not computing density matrix from Green’s function. (0.8.2.6)

12.2 v0.8.1 Febrary 25, 2024

Interface with ABACUS for non-collinaer spin calculations is implemented.

12.3 v0.8.0 Febrary 18, 2024

Add a new DFT code interface to ABACUS! Thanks to Zhen-Xiong Shen and Gan Jin from the ABACUS team for
providing the coding for parsing the ABACUS output files. In this version the colliear spin is implemented and the
non-collinear will be soon added.

12.4 v0.7.7 October 11, 2023

Added script: TB2J_magnon_dos.py for plotting the magnon density of states. See
https://tb2j.readthedocs.io/en/latest/src/magnon_band.html

12.5 v0.7.6 May 10, 2023

TB2J_magnon.py now writes the band structure infomation into a json file. A script to read the json file and plot the
band structure is in the same directory.

49

https://github.com/mailhexu/TB2J/issues/46#issue-2167665710

TB2J

12.6 v0.7.3.1 July 24, 2022

Improve error message for wannier functions badly localized to atomic centers.

12.7 v0.7.3 June 8, 2022

The Vampire output include the DMI and anisotropic exchange. The TB2J_downfold.py is extended to DMI and
anisotropic exchange (for early test only).

12.8 v0.7.2.1 April 20, 2022

Fix compatibility issue with Python3.10

12.9 v0.7.2 March 01, 2022

Add TB2J_eigen.py script to write the eigen values and eigenvectors of the J(q) in a qpoint mesh. Remove J’ and B
from the output, which are often not useful and confusing.

12.10 v0.7.1 January 04, 2022

Bug fix: convention in Vampire output (tensor->tensorial, and a factor of 2 added to the exchange values). Some
documentation about the Vampire format added. (Contributions from Jun Gyu Lee.)

12.11 v0.7.0 October 05, 2021

Allow to do orbital decompositions to isotropic/anisotropic exchange and DMI with --orb_decomposition.

12.12 v0.6.10 September 29, 2021

Bug fix: wrong matrix alignment in orbital decomposition for atom pairs with different species.

12.13 v0.6.9 September 15, 2021

Better xticks in magnon bands.

50 Chapter 12. Release Notes

TB2J

12.14 v0.6.8 September 15, 2021

Bug fix: downfolding with non-magnetic atoms now works. Bug fix: Error reading from user specified structural input
file.

12.15 v0.6.7 September 10, 2021

Use tqdm & p_tqdm instead of progressbar. Fix progressbar in parallel mode.

12.16 v0.6.6 September 1, 2021

Output the figure of J vs distance. Fix a bug when the orbitals are not grouped by atoms.

12.17 v0.6.4 August 9, 2021

Documentation of orbital decomposition. More concise orbital decompostion to the exchange with siesta2J.py. Allow
to specify the orbitals used in the decomposition in siesta2J.py --element option.

12.18 v0.6.3 July 3, 2021

Revert qsolver to old version.

12.19 v0.6.2 May 27, 2021

Enable reading structures from wannier .win file so --posfile is no more necessray.

: --posfile option can still be used.

12.20 v0.6.1

Change the internal order of orbitals in noncollinear Tight-binding.

A script for building docker image has been added (Nikolas Garofil).

12.14. v0.6.8 September 15, 2021 51

TB2J

12.21 v0.6.0

Add TB2J_downfold.py script to deal with ligand spin contribution.

12.22 v0.5.0

Add Wannier input from banddownfolder package using --wannier_type=banddownfolder. Currently only collinear
calculation supported.

12.23 v0.4.4 March 16, 2021

Allow parallel over k in tight binding eigen solver.

12.24 v0.4.3 March 11, 2021

Add Reference to TB2J paper.

12.25 v0.4.2 March 11, 2021

Fix a bug that the atoms scaled positions get wrapped. Fix a bug with consecutive parallel run in python mode.

12.26 v0.4.1 February 2, 2021

Use a Legendre path for the integration which is more stable and requires less poles(--nz). Memory optimization.

12.27 v0.4.0 February 1, 2021

Add --np option to specify number of cpu cores in parallel. Dependency on pathos is added.

12.28 v0.3.8 December 29, 2020

Add --output_path option to specify the output path.

52 Chapter 12. Release Notes

TB2J

12.29 v0.3.6 December 7, 2020

Use Simpson’s rule instead of Euler for integration.

12.30 v0.3.5 November 3, 2020

Add --groupby option in wann2J.py to specify the order of the basis set in the hamiltonian.

12.31 v0.3.3 September 12, 2020

• Use collinear exchange calculator for siesta-collinear calculation, which is faster.

12.32 v0.3.2 September 12, 2020

add \--use_cache option to reduce the memory usage by storing the Hamiltonian

: and eigenvectors on disk using memory map.

12.33 v0.3.1 September 3, 2020

• A bug in the sign of the magnetization along y in Wannier and OpenMX mode is fixed.

12.34 v0.3 August 31, 2020

• A bug in calculation of anisotropic exchange is fixed.

• add TB2J_merge.py for merging DMI and anisotropic exchange from calculations with different spin orientation
or structure rotation.

• Improvement on output txt file.

• An interface to OpenMX (TB2J_OpenMX) is added in a separate github under GPLv3. at https://github.com/
mailhexu/TB2J-OpenMX

• Many improvement and bugfixes

12.29. v0.3.6 December 7, 2020 53

https://github.com/mailhexu/TB2J-OpenMX
https://github.com/mailhexu/TB2J-OpenMX

TB2J

12.35 v0.2 2020

• Moved to github

• DMI and anisotropic exchange

• Magnon band structure (For FM and single magnetic specie)

• Siesta Input

• Documentation on readthedocs

12.36 v0.1 2018

• Initial version on gitlab.abinit.org

• Isotropic exchange

• Wannier function as input

• Interface with Multibinit, Tom’s ASD, and Vampire

54 Chapter 12. Release Notes

CHAPTER

THIRTEEN

INDICES AND TABLES

• genindex

55

TB2J

56 Chapter 13. Indices and tables

INDEX

A
AbstractTB (class in TB2J.myTB), 29
atoms (TB2J.io_exchange.SpinIO attribute), 31

C
colinear (TB2J.io_exchange.SpinIO attribute), 31

D
dmi_ddict (TB2J.io_exchange.SpinIO attribute), 31

G
get_charge_iatom() (TB2J.io_exchange.SpinIO

method), 31
get_charge_ispin() (TB2J.io_exchange.SpinIO

method), 31
get_DMI() (TB2J.io_exchange.SpinIO method), 31
get_full_Jtensor_for_one_R()

(TB2J.io_exchange.SpinIO method), 31
get_full_Jtensor_for_Rlist()

(TB2J.io_exchange.SpinIO method), 31
get_hamR() (TB2J.myTB.AbstractTB method), 29
get_J() (TB2J.io_exchange.SpinIO method), 31
get_J_tensor() (TB2J.io_exchange.SpinIO method),

31
get_Jani() (TB2J.io_exchange.SpinIO method), 31
get_Jiso() (TB2J.io_exchange.SpinIO method), 31
get_orbs() (TB2J.myTB.AbstractTB method), 29
get_spin_iatom() (TB2J.io_exchange.SpinIO

method), 31
get_spin_ispin() (TB2J.io_exchange.SpinIO

method), 31
get_symbol_number_ispin()

(TB2J.io_exchange.SpinIO method), 31
gyro_ratio (TB2J.io_exchange.SpinIO attribute), 31

H
has_bilinear (TB2J.io_exchange.SpinIO attribute), 31
has_dmi (TB2J.io_exchange.SpinIO attribute), 31
has_exchange (TB2J.io_exchange.SpinIO attribute), 31
HS_and_eigen() (TB2J.myTB.AbstractTB method), 29

I
i_spin() (TB2J.io_exchange.SpinIO method), 31
iatom() (TB2J.io_exchange.SpinIO method), 31
ind_atoms (TB2J.io_exchange.SpinIO property), 31
is_siesta (TB2J.myTB.AbstractTB attribute), 29

J
Jani_dict (TB2J.io_exchange.SpinIO attribute), 30

L
load_pickle() (TB2J.io_exchange.SpinIO class

method), 32

M
model() (TB2J.io_exchange.SpinIO method), 32

N
nbasis (TB2J.myTB.AbstractTB attribute), 29
norb (TB2J.myTB.AbstractTB attribute), 29
nspin (TB2J.myTB.AbstractTB attribute), 30

P
plot_all() (TB2J.io_exchange.SpinIO method), 32
plot_DvsR() (TB2J.io_exchange.SpinIO method), 32
plot_JanivsR() (TB2J.io_exchange.SpinIO method),

32
plot_JvsR() (TB2J.io_exchange.SpinIO method), 32

S
spinat (TB2J.io_exchange.SpinIO attribute), 32
SpinIO (class in TB2J.io_exchange), 30

W
write_all() (TB2J.io_exchange.SpinIO method), 32
write_Jq() (TB2J.io_exchange.SpinIO method), 32
write_multibinit() (TB2J.io_exchange.SpinIO

method), 32
write_pickle() (TB2J.io_exchange.SpinIO method),

32
write_tom_format() (TB2J.io_exchange.SpinIO

method), 32

57

TB2J

write_txt() (TB2J.io_exchange.SpinIO method), 32
write_uppasd() (TB2J.io_exchange.SpinIO method),

32
write_vampire() (TB2J.io_exchange.SpinIO method),

32

X
xcart (TB2J.myTB.AbstractTB attribute), 30
xred (TB2J.myTB.AbstractTB attribute), 30

58 Index

	Installation
	Dependencies
	How to install
	How to install in a virtual environment

	Conventions of Heisenberg Model
	Tutorial
	Use TB2J with Wannier90
	Step 0: Find the orbitals and energy range to be used in the Wannier Function Hamiltonian.
	Step 1: Construct WF Hamiltonian from DFT.
	Step 2: Run TB2J
	Noncollinear calculation

	Use TB2J with Siesta
	Collinear calculation without SOC
	Non-collinear calculation

	Use TB2J with OpenMX
	Install TB2J-OpenMX
	running TB2J

	Use TB2J with ABACUS
	Collinear calculation without SOC
	Non-collinear calculation with SOC
	Parameters of abacus2J.py

	Parameters in calculation of magnetic interaction parameters
	List of parameters:

	Averaging multiple parameters
	The ligand spin problem: downfolding the Heisenberg Hamiltonian
	Usage:

	Decompose the exchange into orbital contributions.
	Decomposition in non-collinear mode

	The output of TB2J

	Applications
	Magnon band structure from TB2J output
	Application: Spin Dynamics
	Interface with Multibinit
	Interface with Vampire

	Writting eigen values and eigenvectors of J(q)

	Extending TB2J
	Interface TB2J with other first principles or similar codes.
	Extend the output to other formats

	Roadmap of TB2J
	Features to be implemented

	Ecosystem
	Input to TB2J
	Spin dynamics code interfaced with TB2J
	Workflows
	Codes for Linear Spin Wave method and magnon band structure
	Related software without already-built interface with TB2J

	Frequently asked questions.
	How can I ask questions or report bugs?
	Is it reasonable to do the DFT calculation in a magnetic non-ground state for the calculation of the exchange parameters?
	What quantities should I look into for validating the Wannier functions?
	How can I improve the Wannierization?
	How can I speedup the calculation?
	Is is possible to reduce the memory usage?
	My exchange parameters are different from the results from total energy methods. What are the possible reasons?
	The results seems to contradict the experimental results. Why?
	Does TB2J work with 2D structures or molecules?

	Contributors
	References
	Development
	Code
	Writting documenation

	Release Notes
	v0.8.2 March 4, 2024
	v0.8.1 Febrary 25, 2024
	v0.8.0 Febrary 18, 2024
	v0.7.7 October 11, 2023
	v0.7.6 May 10, 2023
	v0.7.3.1 July 24, 2022
	v0.7.3 June 8, 2022
	v0.7.2.1 April 20, 2022
	v0.7.2 March 01, 2022
	v0.7.1 January 04, 2022
	v0.7.0 October 05, 2021
	v0.6.10 September 29, 2021
	v0.6.9 September 15, 2021
	v0.6.8 September 15, 2021
	v0.6.7 September 10, 2021
	v0.6.6 September 1, 2021
	v0.6.4 August 9, 2021
	v0.6.3 July 3, 2021
	v0.6.2 May 27, 2021
	v0.6.1
	v0.6.0
	v0.5.0
	v0.4.4 March 16, 2021
	v0.4.3 March 11, 2021
	v0.4.2 March 11, 2021
	v0.4.1 February 2, 2021
	v0.4.0 February 1, 2021
	v0.3.8 December 29, 2020
	v0.3.6 December 7, 2020
	v0.3.5 November 3, 2020
	v0.3.3 September 12, 2020
	v0.3.2 September 12, 2020
	v0.3.1 September 3, 2020
	v0.3 August 31, 2020
	v0.2 2020
	v0.1 2018

	Indices and tables
	Index

